1-factors and Characterization of Reducible Faces of Plane Elementary Bipartite Graphs
نویسندگان
چکیده
As a general case of molecular graphs of benzenoid hydrocarbons, we study plane bipartite graphs with Kekulé structures (1-factors). A bipartite graph G is called elementary if G is connected and every edge belongs to a 1-factor of G. Some properties of the minimal and the maximal 1-factor of a plane elementary graph are given. A peripheral face f of a plane elementary graph is reducible, if the removal of the internal vertices and edges of the path that is the intersection of f and the outer cycle of G results in an elementary graph. We characterize the reducible faces of a plane elementary bipartite graph. This result generalizes the characterization of reducible faces of an elementary benzenoid graph.
منابع مشابه
Forcing faces in plane bipartite graphs
Let denote the class of connected plane bipartite graphs with no pendant edges. A finite face s of a graphG ∈ is said to be a forcing face ofG if the subgraph ofG obtained by deleting all vertices of s together with their incident edges has exactly one perfect matching. This is a natural generalization of the concept of forcing hexagons in a hexagonal system introduced in Che and Chen [Forcing ...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملPerfect matchings and ears in elementary bipartite graphs
We give lower and upper bounds for the number of reducible ears as well as upper bounds for the number of perfect matchings in an elementary bipartite graph. An application to chemical graphs is also discussed. In addition, a method to construct all minimal elementary bipartite graphs is described.
متن کاملCharacterization of reducible hexagons and fast decomposition of elementary benzenoid graphs
A benzenoid graph is a finite connected plane graph with no cut vertices in which every interior region is bounded by a regular hexagon of a side length one. A benzenoid graph G is elementary if every edge belongs to a 1-factor of G. A hexagon h of an elementary benzenoid graph is reducible, if the removal of boundary edges and vertices of h results in an elementary benzenoid graph. We characte...
متن کاملA characterization of 1-cycle resonant graphs among bipartite 2-connected plane graphs
It is proved that a bipartite 2-connected plane graph in which the common boundary of adjacent faces is a simple curve is 1-cycle resonant if and only if the outer face of G is alternating and each inner vertex has degree two. This extends a result from [X. Guo, F. Zhang, k-cycle resonant graphs, Discrete Math. 135 (1994) 113-120] that a hexagonal system is 1-cycle resonant if and only if it is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 32 شماره
صفحات -
تاریخ انتشار 2012